Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Public Health ; 53(1): 198-207, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38694863

RESUMO

Background: Cervical cancer occupies a significant place in the overall structure of morbidity and mortality in developing countries. We focused on the sexual health and use of cervical cancer screening among the female working population of reproductive age in Central Serbia. Methods: The research was conducted as a cross-sectional study, according to the methodology Stepwise approach to noncommunicable disease risk factor surveillance WHO. The study population consisted of 1182 female working population aged 18-49 years, living on the territory of Central Serbia. The method of simple random sampling was utilized in the research itself. An anonymous standardized questionnaire was used as a research tool. Results: During the first sexual intercourse, 38.9% of the participants reported not having used any of the contraceptives, whereas 74.5% of the participants reported not having used them during their last sexual intercourse and 26.1% of the respondents reported not having had a single Pap smear in their lifetime. The multivariate logistic regression analysis singled out the following factors in women who reported not having done a Pap smear in their lifetime as the most significant ones: age - the youngest age group (OR = 3.30, CI = 1.80-6.04), unemployment (OR = 2.87, CI = 0.07-3.40), women who had never been married or had never been in a common-law marriage (OR = 2.55, CI = 1.40-4.66) and individuals with a medium education level (OR = 2.63, CI = 1.67-4.14). Conclusion: In Serbia, all the activities should be directed towards increasing the levels of awareness and knowledge on sexual health and cervical cancer screening services.

2.
J Med Virol ; 95(4): e28681, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929719

RESUMO

Cervical cancer is the most frequent malignancy of the female genital tract and is associated with persistent infection of the uterine cervix with high-risk human papillomaviruses (HPV). The two HPV oncoproteins, E6 and E7, cooperatively immortalize cervical cells and are essential but insufficient for inducing tumorigenicity. During the progression of HPV-associated cervical dysplasia to carcinoma, the cellular telomerase reverse transcriptase (TERT) gene is activated and the TERC gene amplified. We questioned whether these increases in telomerase components might mediate the acquisition of the tumorigenic phenotype. We therefore transduced the TERT and TERC genes into E6/E7 immortalized keratinocytes that were anchorage-dependent and nontumorigenic. The resultant cells showed a profound morphological change characteristic of epithelial-mesenchymal transition as well as a corresponding increase in expression of vimentin, N-cadherin, Zinc finger E-Box binding homeobox 1, snail family transcriptional repressor 1 and matrix Metallopeptidase 2 and decrease in keratin and E-cadherin. More important, the transduced cells were now anchorage-independent and formed tumors in immunodeficient mice. Our findings indicate that overexpression of the telomerase holoenzyme in HPV-immortalized cells is sufficient to induce the complete transformed phenotype.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Telomerase , Neoplasias do Colo do Útero , Feminino , Humanos , Animais , Camundongos , Proteínas Oncogênicas Virais/genética , Telomerase/genética , Telomerase/metabolismo , Proteínas E7 de Papillomavirus/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/genética , Queratinócitos/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Neoplasias do Colo do Útero/genética , Papillomaviridae/genética
3.
Cells ; 8(11)2019 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-31717887

RESUMO

Traditional cancer models including cell lines and animal models have limited applications in both basic and clinical cancer research. Genomics-based precision oncology only help 2-20% patients with solid cancer. Functional diagnostics and patient-derived cancer models are needed for precision cancer biology. In this review, we will summarize applications of conditional cell reprogramming (CR) in cancer research and next generation living biobanks (NGLB). Together with organoids, CR has been cited in two NCI (National Cancer Institute, USA) programs (PDMR: patient-derived cancer model repository; HCMI: human cancer model initiatives. HCMI will be distributed through ATCC). Briefly, the CR method is a simple co-culture technology with a Rho kinase inhibitor, Y-27632, in combination with fibroblast feeder cells, which allows us to rapidly expand both normal and malignant epithelial cells from diverse anatomic sites and mammalian species and does not require transfection with exogenous viral or cellular genes. Establishment of CR cells from both normal and tumor tissue is highly efficient. The robust nature of the technique is exemplified by the ability to produce 2 × 106 cells in five days from a core biopsy of tumor tissue. Normal CR cell cultures retain a normal karyotype and differentiation potential and CR cells derived from tumors retain their tumorigenic phenotype. CR also allows us to enrich cancer cells from urine (for bladder cancer), blood (for prostate cancer), and pleural effusion (for non-small cell lung carcinoma). The ability to produce inexhaustible cell populations using CR technology from small biopsies and cryopreserved specimens has the potential to transform biobanking repositories (NGLB: next-generation living biobank) and current pathology practice by enabling genetic, biochemical, metabolomic, proteomic, and biological assays, including chemosensitivity testing as a functional diagnostics tool for precision cancer medicine. We discussed analyses of patient-derived matched normal and tumor models using a case with tongue squamous cell carcinoma as an example. Last, we summarized applications in cancer research, disease modeling, drug discovery, and regenerative medicine of CR-based NGLB.


Assuntos
Técnicas de Reprogramação Celular/métodos , Reprogramação Celular/fisiologia , Amidas , Animais , Bancos de Espécimes Biológicos/tendências , Biópsia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Células Epiteliais/patologia , Humanos , Neoplasias Pulmonares/patologia , Masculino , Modelos Biológicos , Medicina de Precisão/métodos , Neoplasias da Próstata/patologia , Proteômica , Piridinas , Neoplasias da Bexiga Urinária/patologia
4.
Nat Protoc ; 12(2): 439-451, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28125105

RESUMO

Historically, it has been difficult to propagate cells in vitro that are derived directly from human tumors or healthy tissue. However, in vitro preclinical models are essential tools for both the study of basic cancer biology and the promotion of translational research, including drug discovery and drug target identification. This protocol describes conditional reprogramming (CR), which involves coculture of irradiated mouse fibroblast feeder cells with normal and tumor human epithelial cells in the presence of a Rho kinase inhibitor (Y-27632). CR cells can be used for various applications, including regenerative medicine, drug sensitivity testing, gene expression profiling and xenograft studies. The method requires a pathologist to differentiate healthy tissue from tumor tissue, and basic tissue culture skills. The protocol can be used with cells derived from both fresh and cryopreserved tissue samples. As approximately 1 million cells can be generated in 7 d, the technique is directly applicable to diagnostic and predictive medicine. Moreover, the epithelial cells can be propagated indefinitely in vitro, yet retain the capacity to become fully differentiated when placed into conditions that mimic their natural environment.


Assuntos
Reprogramação Celular , Técnicas de Cocultura/métodos , Neoplasias/patologia , Amidas/farmacologia , Animais , Transformação Celular Neoplásica , Células Alimentadoras/citologia , Células Alimentadoras/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Ratos , Quinases Associadas a rho/antagonistas & inibidores
5.
Oncotarget ; 7(41): 66740-66753, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27556514

RESUMO

The Myc/Max/Mad network plays a critical role in cell proliferation, differentiation and apoptosis and c-Myc is overexpressed in many cancers, including HPV-positive cervical cancer cell lines. Despite the tolerance of cervical cancer keratinocytes to high Myc expression, we found that the solitary transduction of the Myc gene into primary cervical and foreskin keratinocytes induced rapid cell death. These findings suggested that the anti-apoptotic activity of E7 in cervical cancer cells might be responsible for negating the apoptotic activity of over-expressed Myc. Indeed, our earlier in vitro studies demonstrated that Myc and E7 synergize in the immortalization of keratinocytes. Since we previously postulated that E7 and the ROCK inhibitor, Y-27632, were members of the same functional pathway in cell immortalization, we tested whether Y-27632 would inhibit apoptosis induced by the over-expression of Myc. Our findings indicate that Y-27632 rapidly inhibited Myc-induced membrane blebbing and cellular apoptosis and, more generally, functioned as an inhibitor of extrinsic and intrinsic pathways of cell death. Most important, Y-27632 cooperated with Myc to immortalize keratinocytes efficiently, indicating that apoptosis is a major barrier to Myc-induced immortalization of keratinocytes. The anti-apoptotic activity of Y-27632 correlated with a reduction in p53 serine 15 phosphorylation and the consequent reduction in the expression of downstream target genes p21 and DAPK1, two genes involved in the induction of cell death.


Assuntos
Amidas/farmacologia , Apoptose/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Apoptose/genética , Transformação Celular Viral/efeitos dos fármacos , Transformação Celular Viral/genética , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Inibidores Enzimáticos/farmacologia , Perfilação da Expressão Gênica/métodos , Humanos , Queratinócitos/metabolismo , Queratinócitos/virologia , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Am J Pathol ; 183(6): 1862-1870, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24096078

RESUMO

Both feeder cells and Rho kinase inhibition are required for the conditional reprogramming and immortalization of human epithelial cells. In the present study, we demonstrated that the Rho kinase inhibitor Y-27632, significantly suppresses keratinocyte differentiation and extends life span in serum-containing medium but does not lead to immortalization in the absence of feeder cells. Using Transwell culture plates, we further demonstrated that physical contact between the feeder cells and keratinocytes is not required for inducing immortalization and, more importantly, that irradiation of the feeder cells is required for this induction. Consistent with these experiments, conditioned medium was shown to induce and maintain conditionally immortalized cells, which was accompanied by increased telomerase expression. The activity of conditioned medium directly correlated with radiation-induced apoptosis of the feeder cells. Thus, the induction of conditionally reprogrammed cells is mediated by a combination of Y-27632 and a diffusible factor (or factors) released by apoptotic feeder cells.


Assuntos
Apoptose/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Raios gama , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Queratinócitos/metabolismo , Células 3T3 , Animais , Linhagem Celular Transformada , Meios de Cultivo Condicionados/farmacologia , Células Alimentadoras , Humanos , Queratinócitos/citologia , Masculino , Camundongos
7.
J Virol ; 86(17): 9465-73, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22740411

RESUMO

The high-risk human papillomavirus type 16 (HPV-16) E5 protein (16E5) induces tumors in a transgenic mouse model and may contribute to early stages of cervical carcinogenesis. Although high-risk E5 expression is generally thought to be lost during the progression to cervical carcinoma following integration of HPV DNA into the host genome, episomal viral DNA has been documented in a subset of HPV-16-positive malignant lesions. Numerous studies have shown that transcripts that could potentially encode 16E5 are present in cervical biopsy specimens and cervical cancer cell lines, but the presence of E5 protein has been demonstrated in only two reports that have not been corroborated. In the present study, we show that trypsin cleavage of 16E5 generates a unique four-amino-acid C-terminal peptide (FLIT) that serves as a marker for E5 expression in transfected cells and epithelial cell lines containing integrated and episomal HPV-16 DNA. Following trypsin cleavage, reversed-phase chromatography and mass spectrometry (MS) were used to detect FLIT. Immunoprecipitation assays using a newly generated anti-16E5 antibody confirmed that 16E5 was solely responsible for the FLIT signal, and deuterated FLIT peptide provided an internal standard that enabled us to quantify the number of 16E5 molecules per cell. We show that 16E5 is expressed in the Caski but not in the SiHa cervical cancer cell line, suggesting that 16E5 may contribute to the malignant phenotype of some cervical cancers, even in cells exclusively containing an integrated HPV genome.


Assuntos
Células Epiteliais/química , Papillomavirus Humano 16/química , Proteínas Oncogênicas Virais/análise , Sequência de Aminoácidos , Animais , Linhagem Celular Transformada , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Espectrometria de Massas/métodos , Camundongos , Dados de Sequência Molecular , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Mapeamento de Peptídeos , Neoplasias do Colo do Útero/química , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia
8.
Am J Pathol ; 180(2): 599-607, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22189618

RESUMO

We demonstrate that a Rho kinase inhibitor (Y-27632), in combination with fibroblast feeder cells, induces normal and tumor epithelial cells from many tissues to proliferate indefinitely in vitro, without transduction of exogenous viral or cellular genes. Primary prostate and mammary cells, for example, are reprogrammed toward a basaloid, stem-like phenotype and form well-organized prostaspheres and mammospheres in Matrigel. However, in contrast to the selection of rare stem-like cells, the described growth conditions can generate 2 × 10(6) cells in 5 to 6 days from needle biopsies, and can generate cultures from cryopreserved tissue and from fewer than four viable cells. Continued cell proliferation is dependent on both feeder cells and Y-27632, and the conditionally reprogrammed cells (CRCs) retain a normal karyotype and remain nontumorigenic. This technique also efficiently establishes cell cultures from human and rodent tumors. For example, CRCs established from human prostate adenocarcinoma displayed instability of chromosome 13, proliferated abnormally in Matrigel, and formed tumors in mice with severe combined immunodeficiency. The ability to rapidly generate many tumor cells from small biopsy specimens and frozen tissue provides significant opportunities for cell-based diagnostics and therapeutics (including chemosensitivity testing) and greatly expands the value of biobanking. In addition, the CRC method allows for the genetic manipulation of epithelial cells ex vivo and their subsequent evaluation in vivo in the same host.


Assuntos
Amidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/fisiologia , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Alimentadoras/fisiologia , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Animais , Mama/citologia , Técnicas de Cultura de Células , Reprogramação Celular/efeitos dos fármacos , Colágeno , Combinação de Medicamentos , Células Epiteliais/citologia , Células Alimentadoras/citologia , Feminino , Humanos , Laminina , Masculino , Camundongos , Camundongos SCID , Transplante de Neoplasias , Próstata/citologia , Neoplasias da Próstata/patologia , Proteoglicanas , Transplante Heterólogo
9.
J Virol ; 84(20): 10619-29, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20686024

RESUMO

The human papillomavirus type 16 E5 oncoprotein (16E5) enhances acute, ligand-dependent activation of the epidermal growth factor receptor (EGFR) and concomitantly alkalinizes endosomes, presumably by binding to the 16-kDa "c" subunit of the V-ATPase proton pump (16K) and inhibiting V-ATPase function. However, the relationship between 16K binding, endosome alkalinization, and altered EGFR signaling remains unclear. Using an antibody that we generated against 16K, we found that 16E5 associated with only a small fraction of endogenous 16K in keratinocytes, suggesting that it was unlikely that E5 could significantly affect V-ATPase function by direct inhibition. Nevertheless, E5 inhibited the acidification of endosomes, as determined by a new assay using a biologically active, pH-sensitive fluorescent EGF conjugate. Since we also found that 16E5 did not alter cell surface EGF binding, the number of EGFRs on the cell surface, or the endocytosis of prebound EGF, we postulated that it might be blocking the fusion of early endosomes with acidified vesicles. Our studies with pH-sensitive and -insensitive fluorescent EGF conjugates and fluorescent dextran confirmed that E5 prevented endosome maturation (acidification and enlargement) by inhibiting endosome fusion. The E5-dependent defect in vesicle fusion was not due to detectable disruption of actin, tubulin, vimentin, or cytokeratin filaments, suggesting that membrane fusion was being directly affected rather than vesicle transport. Perhaps most importantly, while bafilomycin A(1) (like E5) binds to 16K and inhibits endosome acidification, it did not mimic the ability of E5 to inhibit endosome enlargement or the trafficking of EGF. Thus, 16E5 alters EGF endocytic trafficking via a pH-independent inhibition of vesicle fusion.


Assuntos
Fator de Crescimento Epidérmico/fisiologia , Papillomavirus Humano 16/fisiologia , Papillomavirus Humano 16/patogenicidade , Proteínas Oncogênicas Virais/fisiologia , Animais , Transporte Biológico Ativo , Células COS , Células Cultivadas , Chlorocebus aethiops , Endossomos/fisiologia , Endossomos/virologia , Receptores ErbB/fisiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Papillomavirus Humano 16/genética , Humanos , Concentração de Íons de Hidrogênio , Proteínas Oncogênicas Virais/genética , ATPases Translocadoras de Prótons/antagonistas & inibidores , Internalização do Vírus
10.
Virology ; 332(1): 102-13, 2005 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-15661144

RESUMO

The E5 proteins of bovine papillomavirus type 1 (BPV-1) and human papillomavirus type 16 (HPV-16) are small (44-83 amino acids), hydrophobic polypeptides that localize to membranes of the Golgi apparatus and endoplasmic reticulum, respectively. While the oncogenic properties of BPV-1 E5 have been characterized in detail, less is known about HPV-16 E5 due to its low expression in mammalian cells. Using codon-optimized HPV-16 E5 DNA, we have generated stable fibroblast cell lines that express equivalent levels of epitope-tagged BPV-1 and HPV-16 E5 proteins. In contrast to BPV-1 E5, HPV-16 E5 does not activate growth factor receptors, phosphoinositide 3-kinase or c-Src, and fails to induce focus formation, although it does promote anchorage-independent growth in soft agar. These variant activities are apparently unrelated to differences in intracellular localization of the E5 proteins since retargeting HPV-16 E5 to the Golgi apparatus does not induce focus formation.


Assuntos
Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/metabolismo , Animais , Papillomavirus Bovino 1/genética , Papillomavirus Bovino 1/metabolismo , Códon , Epitopos/análise , Humanos , Papillomaviridae/genética , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...